Comparing Primary Tumors and Metastatic Nodes in Head and Neck Cancer Using Intravoxel Incoherent Motion Imaging: A Preliminary Experience

Yonggang Lu, PhD,* Jacobus F.A. Jansen, PhD,† Hilda E. Stambuk, MD,‡ Gaurov Gupta, MD,§ Nancy Lee, MD,§ Mithat Gonen, PhD,¶ Andre Moreira, MD,¶ Yousef Mazaheri, PhD,*# Snehal G. Patel, MD,# Joseph O. Deasy, PhD,* Jatin P. Shah, MD,# and Amita Shukla-Dave, PhD*§

Objective: This study aimed to use intravoxel incoherent motion (IVIM) imaging for investigating differences between primary head and neck tumors and nodal metastases and to evaluate IVIM efficacy in predicting patient outcome.

Methods: Sixteen patients with head and neck cancer underwent IVIM diffusion-weighted imaging on a 1.5-T magnetic resonance imaging scanner. The significance of parametric difference between primary tumors and metastatic nodes were tested. Progression-free survival and overall survival were estimated using the Kaplan-Meier method.

Results: In comparison with metastatic nodes, the primary tumors had significantly higher vascular volume fraction (f) (P < 0.0009) and lower diffusion coefficient (D) (P < 0.0002). Patients with lower SD for D had prolonged progression-free survival and overall survival (P < 0.05).

Conclusion: Pretreatment IVIM measures were feasible in investigating the physiologic differences between the 2 tumor tissues. After appropriate validation, these findings might be useful in optimizing treatment planning and improving patient care.

Key Words: intravoxel incoherent motion imaging (IVIM), head and neck (HN) cancer, primary tumor, metastatic neck node

Magnetic resonance imaging (MRI) is a noninvasive method that provides images of high spatial resolution with excellent tissue contrast and has shown promise in the detection, staging, prognosis, and monitoring of head and neck cancers. However, on anatomical MRI images, primary tumors and metastatic neck nodes often exhibit similar signal intensities, indicating the weakness of anatomical MRI in accurately characterizing these 2 tumor tissues. Functional MRI techniques such as diffusion-weighted imaging (DWI) allow noninvasive measurement of water molecule diffusivity and have shown promise in the advanced quantification of tumor tissues. Prior head and neck cancer studies have shown that the apparent diffusion coefficient (ADC) derived from monoexponential modeling of the DWI data helps to enhance sensitivity and specificity in tumor differentiation, and treatment response evaluation. More recently, biexponential modeling such as intravoxel incoherent motion (IVIM) model derived from multiple b value DWI data has been found to provide simultaneously quantitative parameters that reflect diffusion and perfusion without the need for injection of a contrast agent. Intravoxel incoherent motion model regards biological tissue as 2 compartments of intravascular and extravascular spaces. By appropriate modeling, the characteristics of each compartment in biological tissues can be quantified. Intravoxel incoherent motion was applied early in the investigation of diseases such as chronic brain ischemia, liver cirrhosis, and muscle inflammatory myopathy. The use of IVIM has been expanded to characterize tumor biology and has shown its superiority over DWI in the detection and differentiation of prostate, pancreas, and breast tumors. The purpose of the present study was to apply IVIM model to simultaneously quantify the perfusion and diffusion measures in primary tumors and neck nodal metastases and investigate the physiologic differences between these 2 tumor tissues. In addition, pretreatment IVIM measures were evaluated for their efficacy in predicting patient outcome in head and neck cancers.

MATERIALS AND METHODS

Patients

Our institutional review board approved and issued a waiver of informed consent for this retrospective study, which was compliant with the Health Insurance Portability and Accountability Act. Inclusion criteria for the study were as follows: biopsy-proven head and neck squamous cell carcinoma and presence of nodal metastasis in the neck. Between June 2010 and May 2011, 16 patients with head and neck cancer (age range, 38–64 years; male/female, 15/1; primary cancer, 11 oropharynx, 4 oral cavity, and 1 nasopharynx; tumor size, 744–19,949 mm³) were enrolled (Table 1). Each patient had a known primary tumor and regional...
metastatic node. Patients were treated with surgery (n = 2) or chemo- radiation therapy (n = 14).

Intravoxel Incoherent Motion

Pretreatment clinical MRI examinations were performed on a GE 1.5-T Excite scanner (General Electric, Milwaukee, Wis) with an 8-channel neurovascular phased-array coil. Intravoxel incoherent motion DWI was performed after standard multiplanar (sagittal, axial, and coronal) T1- and T2-weighted imaging.

Intravoxel incoherent motion images was acquired using a single-shot echo planar imaging spin echo sequence with 17 b values as derived from the geometric form \(b = (0, 10a, 10a^2, \ldots, 10a^n; a = 1.32, n = 16) \). The b values were as follows: \(b = 0, 13, 17, 23, 30, 40, 53, 70, 92, 122, 161, 212, 280, 369, 488, 644, \) and 850 s/mm\(^2\), respectively. Other parameters were as follows: TR (repetition time) = 4000 ms, TE (echo time) = 90 to 104 ms, number of excitation = 4, matrix = 128 × 128, field of view = 20 to 22 cm, slices = 4 to 6, and slice thickness = 6 to 8 mm. Array spatial sensitivity encoding technique was turned off. Before IVIM scanning, a reference scan was used to reduce the Nyquist (N/2) ghosting artifacts. Images were all obtained in axial planes. To save acquisition time, diffusion encoding.

FIGURE 1. Intravoxel incoherent motion images and model fits from 2 representative patients. **A** and **B**, For a patient without necrotic node (male, 54 years old, oropharynx tumor). **C** and **D**, For a patient with necrotic node (male, 56 years old, oropharynx tumor). The primary tumors and metastatic nodes excluding necrotic areas (outlined as white and black, respectively) were prescribed on IVIM images at \(b = 0 \) s/mm\(^2\) in **A** and **C**. Intravoxel incoherent motion model fits for the primary tumors and metastatic nodes are shown in **B** and **D**. The solid curves represent the fits from the biexponential function, and the dashed curves represent the fits from the monoexponential function. In **B** and **D**, the vertical axis represents the logarithmic of the signal \((S/S_0)\), and the horizontal axis represents the b values. In **A** and **C**, the white boxes depict the noise ROIs for estimating image noise. In the figure, the primary tumors were labeled as primary, and the metastatic nodes, as node.

TABLE 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients</td>
<td>16</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
</tr>
<tr>
<td>Mean age, y</td>
<td>55</td>
</tr>
<tr>
<td>Age range, y</td>
<td>38–64</td>
</tr>
<tr>
<td>Male/female</td>
<td>15/1</td>
</tr>
<tr>
<td>Location of primary tumor</td>
<td></td>
</tr>
<tr>
<td>Oropharynx</td>
<td>11</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>4</td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>1</td>
</tr>
<tr>
<td>Stages</td>
<td></td>
</tr>
<tr>
<td>Stage III</td>
<td>1</td>
</tr>
<tr>
<td>Stage IV</td>
<td>15</td>
</tr>
<tr>
<td>Tumor size, mm(^3)</td>
<td>744–19,949</td>
</tr>
<tr>
<td>Therapy types</td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>2</td>
</tr>
<tr>
<td>Chemoradiation</td>
<td>14</td>
</tr>
</tbody>
</table>
was performed along 1 direction (0.577, 0.577, 0.577), assuming that diffusion in tumors is isotropic. The total acquisition time for obtaining the IVIM data was approximately 4 minutes.

Intravoxel incoherent motion images were analyzed using the monoexponential (Equation 1) and biexponential (Equation 2) models:

\[
A_1 = S_0 \exp \left(-bA_D \right) \quad [1]
\]

\[
A_2 = S_0 \left(\left(1 - f \right) \exp \left(-bD \right) + f \exp \left(-bD^* \right) \right) \quad [2]
\]

where \(A_1\) or \(A_2\) and \(S_0\) are the signal intensities with and without diffusion weighting, respectively; \(b\) is the gradient factor (in seconds per millimeter squared); \(A_D\) is the apparent diffusion coefficient (in squared millimeters per second); \(f\) is the vascular fraction (in squared millimeters per second); \(D\) is the pure diffusion coefficient (in squared millimeters per second); and \(D^*\) is the pseudodiffusion coefficient (in squared millimeters per second) associated with blood perfusion.23,24

Because IVIM images are inherently noisy because of thermal or physiologic factors, the signal intensity of a noisy IVIM image is given by:

\[
S = A_1 + n \quad [3],
\]

where \(n\) is the noise intensity, and \(i = 1\) and 2 for the Equations 1 and 2, respectively. The signals of \(S\) and \(n\) are Rician-distributed on the IVIM images.26

To estimate the parameters, a \(\chi^2\) was defined and minimized27:

\[
\chi^2(p) = \sum_{i=1}^{N} \left[\frac{M_k - MN \left(S_i(b_i, p) \right)}{\sigma^2} \right]^2 \quad [4],
\]

where \(P\) is the estimated measure set; \(N_k\) is the number of b values (\(N_k = 16\) in this study); \(M_k\) is the signal intensity measured at the \(b_k\) b value; \(\sigma\) is the SD of noise; and \(MN(S_i)\) is the averaged intensity calculated from the signals with Rician distribution. \(MN(S_i)\) is given by28,29:

\[
MN(S^2) = A^2_2 + \frac{2N\sigma^2}{N_{avg}} \quad [5],
\]

where \(N\) is the number of receiver channels (\(N = 8\)), and \(N_{avg}\) is the average number of IVIM data acquisition (\(N_{avg} = 4\)).

To estimate the SD of noise (\(\sigma\)) and signal-to-noise ratio (SNR) in the IVIM images acquired with the 8-channel phased-array coil, a region of interest (ROI)-based method that accounts for a multiple-channel MRI system with Rician-distributed noise and signal averaging was applied.28,29 The SD of noise was estimated from a noise ROI that was positioned on the background of the image without signal (the white box in Fig. 1), which was calculated as:

\[
\sigma = \sqrt{\frac{N_{avg} \sum_{i=1}^{N} n_i^2}{2NL}} \quad [6],
\]

where \(n\) is the noise intensity of each voxel and \(L\) is the number of voxels within the noise ROI.

The nonlinear least-square fitting method was performed to estimate the parameters. The subspace trust region algorithm, which is built into Matlab (Mathworks, Natick, Mass) by the manufacturer, was used for the optimization procedure in the data fittings.30 The parameters of each voxel were calculated. A multiple start scheme (10 times in this study) was used in the optimization procedure. For each time, the start value of each parameter was the random value chosen between the lower and upper bound of the measure set \([P(0, 1), D(0, 4 \times 10^{-3} \text{ mm}^2/\text{s}), D^*(0, 300 \times 10^{-3} \text{ mm}^2/\text{s}), S_0(0, 1000)]\). With these multiple starts, the final estimated measure value was chosen as the estimated measure set with minimum \(\chi^2\).

The location of primary tumors and metastatic nodes in 16 patients with head and neck cancer was identified and manually segmented on standard MRI and DWI images by a neuroradiologist with more than 10 years of experience. For each patient, the total tumor volume was obtained by summing the voxel volume for all slices that contained tumor on T1-weighted images.13 Regions of interest for IVIM fitting were prescribed on primary tumors and metastatic nodes on DWI images (\(b = 0\), avoiding necrotic areas. The data were fitted on a voxel-by-voxel basis, and the derived measures were then averaged to yield mean and SD for ROI analysis. The SD of the measures describes the width of the distribution and is thought to be indicative of the heterogeneity in tumor tissues.31

Patient Assessment

Clinical assessment to evaluate outcome was done by a radiation oncologist with more than 10 years of experience, incorporating clinical evaluation and imaging information obtained from positron emission tomographic/computed tomographic and MRI studies. Data were censored at the time of last follow-up. Tumor recurrence was classified on a scale of 0 to 3, where 0 means no metastasis; 1, local or regional metastases; 2, distant metastases; and 3, regional and distant metastases. Patient status was regarded as alive (score 0) and deceased (score 1). The primary end points calculated were progression-free survival (PFS) and overall survival (OS), consistent with published literature.32

Statistical Analysis

The Lilliefors test was used to test the normality of all IVIM-derived measures from 16 head and neck cancer patients. Paired Student \(t\) tests were performed to compare the difference in IVIM-derived measures between 16 pairs of a primary tumor and a metastatic node. Nonparametric Spearman correlation coefficients (\(\rho\)) were calculated to investigate the correlation of the derived measures between the paired primary tumor and metastatic node. Parametric differences were tested using the statistical method of analysis of variance. A \(P\) value of less than 0.05 indicated statistical significance. Univariate receiver operating characteristic (ROC) analyses were performed on the measures that were significantly different in the 2 groups. Multivariate ROC analyses were also performed on the combination of significant measures. For ROC analyses, the probabilities of estimated measures were first calculated with logistic regression models and then used for the construction of the ROC curves. Area under the ROC curves (AUC) for different measures were calculated to determine the accuracy of discrimination.

Measures derived from IVIM modeling for each pair of primary tumor and metastatic node and the difference of these measures between paired primary tumor and metastatic node were used for the associations with clinical outcomes (OS and PFS). The Kaplan-Meier method was used to estimate the probabilities of survival in OS and PFS, and the log-rank test was performed to determine the measures that can classify patients into 2 groups with significant survival difference.

All programs for the aforementioned analyses were developed in-house using the software written in Matlab 6.5. The software was run on Windows system (Microsoft, Redmond, Wash) installed on a desktop workstation with Intel Pentium 4 CPU 3.20 GHz and 3.24 GB RAM. The most computer-intensive program was voxelwise IVIM fitting. For example, the

© 2013 Lippincott Williams & Wilkins www.jcat.org | 3
TABLE 2. Paired Student t Test and Correlation Analysis for 16 Primary Tumors and Metastatic Nodes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Primary Tumor</th>
<th>Metastatic Node</th>
<th>Correlation Coefficient ρ (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC, 10⁻³ mm²/s</td>
<td>1.05 (0.31)</td>
<td>1.10 (0.26)</td>
<td>0.38 (0.06)**</td>
</tr>
<tr>
<td>f</td>
<td>0.30 (0.10)</td>
<td>0.23 (0.08)</td>
<td>0.0009* 0.60 (0.013)*</td>
</tr>
<tr>
<td>D, 10⁻³ mm²/s</td>
<td>0.49 (0.24)</td>
<td>0.70 (0.25)</td>
<td>0.0002* 0.71 (0.0018)*</td>
</tr>
<tr>
<td>D*, 10⁻³ mm²/s</td>
<td>45.61 (24.12)</td>
<td>50.47 (26.98)</td>
<td>0.41 (0.02)</td>
</tr>
</tbody>
</table>

*P < 0.05.
ρ, correlation coefficient.

TABLE 3. Receiver Operating Characteristic Curve Analysis

<table>
<thead>
<tr>
<th>Measures</th>
<th>AUC Threshold</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC, 10⁻³ mm²/s</td>
<td>0.55</td>
<td>62.5</td>
<td>62.5</td>
<td>0.29</td>
</tr>
<tr>
<td>f</td>
<td>0.71</td>
<td>62.5</td>
<td>75.0</td>
<td>0.008*</td>
</tr>
<tr>
<td>D, 10⁻³ mm²/s</td>
<td>0.74</td>
<td>56.2</td>
<td>93.7</td>
<td>0.003*</td>
</tr>
<tr>
<td>D*, 10⁻³ mm²/s</td>
<td>0.53</td>
<td>62.5</td>
<td>62.5</td>
<td>0.35</td>
</tr>
<tr>
<td>[f, D]</td>
<td>0.76</td>
<td>62.5</td>
<td>81.2</td>
<td>0.0009*</td>
</tr>
</tbody>
</table>

*AUC is statistically greater than 0.5 (P < 0.05).

RESULTS

The analysis was performed on pretreatment IVIM data acquired from 16 patients with paired primary tumors and metastatic nodes. Figure 1 shows the IVIM images and model fitting plots from 2 representative patients, having nodes with and without necrosis, respectively. For both patients’ IVIM data, the biexponential function has a better fitting than the monoexponential function. For example, in the primary tumor of the first representative patient (Fig. 1A and B), the biexponential fitting has a higher value of coefficient of determination (R^2) than the monoexponential fitting (0.96 vs 0.93). It can be observed that the fitted curves for primary tumors have different shapes from those for metastatic neck nodes; at high b values, the curve slopes from primary tumors are much lower than those for metastatic neck nodes, showing low diffusivity in the primary tumors. Intravoxel incoherent motion data obtained from the 16 patients with head and neck cancer showed that the biexponential function had a significantly better fitting than the monoexponential function for primary tumors, mean (SD) $R^2 = 0.95 (0.03)$ vs $0.85 (0.10); P < 0.0004$; for metastatic nodes, mean (SD) $R^2 = 0.98 (0.02)$ vs $0.94 (0.05); P < 0.0009$.

Normality test revealed that all IVIM-derived measures appeared to have normal distribution ($P < 0.05$). It was found that the ADC derived from the monoexponential model was not significantly different between the groups of primary tumors and metastatic nodes ($P > 0.05$; Table 2). However, the D value, derived from the biexponential model, was significantly lower ($P = 0.0002$; Table 2; Fig. 2) in primary tumors when compared with metastatic nodes. The perfusion-related measure f was also significant in comparing these 2 tumor tissues ($P = 0.0002$; Table 2; Fig. 2). It was found that there was significant correlation of all measures derived from IVIM (ADC, f, D, and D*) between primary tumors and metastatic nodes (P ranged from 0.60 to 0.71; $P < 0.013$; Table 2).

For clinical outcomes, 12 patients had no tumor recurrence, 1 patient had local or regional metastases, 2 patients had distant metastases, and 1 patient had regional and distant metastases; 1 patient was deceased, and 15 patients were alive. The analysis by the Kaplan-Meier method showed that patients with lower SD of diffusion coefficient [SD (D)] from both primary tumors and metastatic nodes had prolonged PFS ($P < 0.001$ for primary tumor, $P = 0.017$ for metastatic node) and OS ($P = 0.037$ for primary tumor, $P = 0.037$ for metastatic node). Figure 4 displays the PFS curves for SD (D) from primary tumors and metastatic nodes. There was no significance achieved when the difference of these measurements between paired primary tumor and metastatic node were used for the associations with clinical outcomes ($P > 0.05$).

DISCUSSION

In head and neck cancers, primary tumors often metastasize to locoregional lymph nodes. Metastatic tumors invariably represent more aggressive tumors that may respond poorly to treatment.33,34 Accurate characterization of primary tumors and other regions of interest (ROI) using IVIM computational time for IVIM fitting of an ROI with 500 voxels was approximately 2 minutes.

FIGURE 2. Box-and-whisker plots illustrating parameter differences with statistical significance between the primary tumors and metastatic nodes in 16 patients. In the figure, the primary tumors were labeled as primary, and the metastatic nodes, as node.

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
neck nodal metastases by noninvasive methods is important to help guide individualized treatment planning and improve cancer patient management. Therefore, it is clinically pertinent to study the physiologic differences in primary and metastatic neck nodes and evaluate their values in predicting outcome in patients with head and neck cancer. Previous studies have investigated either primary tumors or metastatic nodes.12-16 No study has been reported that compares these 2 tumor tissues. Our study is the first in proposing such an investigation using IVIM technique. The results of our study demonstrate that primary tumors have distinct in vivo MR signatures with significantly higher vascular fractions (f) and lower diffusion coefficients (D) than those in metastatic nodes in head and neck cancer. In addition, this study also revealed that SD, that is, width of the distribution of measure D [SD (D)] was the most significant in predicting PFS and OS.

The basic biological premise for the use of DWI in cancer is that malignant tissues are generally more cellular and vascular than normal tissues. There are several microscopic organizational features that affect tissue water diffusivity, tissue perfusion, cell density, distribution of cell sizes within a tissue, integrity of cellular membranes, and tissue organization.15 Inverse correlation between the diffusion coefficient and cell density has been found in gliomas, prostate cancers, and a few childhood tumors.1,36,37 The novelty of IVIM is that it can characterize tumor diffusion more accurately than DWI and provide an additional perfusion-related measure without injection of any contrast agent. The ADC value derived from the monoexponential model is a composite parameter that has the integrated effect of both diffusion and perfusion. Because of its composite effect, ADC value failed in distinguishing the primary tumor and metastatic node in this study [mean (SD), 1.05 (0.31) vs 1.10 (0.26) \(\times 10^{-3} \text{ m}^2/\text{s} \); \(P < 0.38 \)]. The IVIM technique has the potential to separate diffusion and perfusion and provide measures to quantify these 2 processes simultaneously. High-fold magnification of \(P \) values of D (\(P < 0.002 \)) and f (\(P < 0.0009 \)) clearly show that the primary tumors have diffusion and perfusion characteristics that are distinct from those of the metastatic nodes. These findings were further verified in the results of ROC analysis, which showed that the ADC was unsuccessful whereas f and D succeeded in differentiating the 2 tumor tissues. Of note, the combination of f and D was found to be the most significant in the differentiation study.

These physiologic differences in diffusion and perfusion measures may play an important role in assessing early response to antiangiogenic agents and in treatment planning where radiation dose de-escalation at the nodal site is being considered for HPV-positive patients who have better outcome than HPV-negative patients when treated with chemoradiation therapy. In the future, different doses may be given to the primary and nodal metastases in an attempt to lower toxicity while maintaining same outcome.

The link between DWI findings and angiogenesis is not direct.38,40 It has been hypothesized by Koh et al41 that tumors with a higher pretreatment ADC are more susceptible to the effects of therapy with vascular disrupting or antiangiogenesis agents. They suggested based on results of DWI in 15 patients with solid tumors (mostly colorectal and ovarian) that immature tumor vessels that predominate at the edge of necrotic regions (with high ADC values) are more susceptible to the antiangiogenic agent bevacizumab.

The preliminary analysis of outcome results showed that the SD (D) in both primary tumors and metastatic nodes was

\[\text{FIGURE 3.} \] Receiver operating characteristic curves for differentiation of primary tumors from metastatic nodes based on the values of f, D, and the combination of f and D.

\[\text{FIGURE 4.} \] Kaplan-Meier PFS plots. A, Patients stratified at median SD (D) of primary tumor. B, Patients stratified at median SD (D) of metastatic node. In both A and B, dashes lines represent the plot with SD (D) greater than the median, and the solid lines represent the plot with SD (D) less than the median. The dots above each line represent censored observations.
significant in predicting PFS and OS. It has been recently reported in a study with 18 patients with head and neck cancer undergoing induction chemotherapy that ADC may be a useful marker in predicting PFS. The same group had earlier reported that ADC can also be used as a marker for prediction and early detection of response to concurrent chemoradiation therapy in 33 patients with head and neck cancer. Validation studies are needed to see if the aforementioned and our findings can be reproduced before making definitive conclusions about the prognostic nature of ADC or IVIM measures.

There are a few limitations in this study. First, it is a cross-sectional feasibility study that acquired and analyzed data from a small patient population (n = 16) to assess the benefits of IVIM in investigating the difference between primary tumors and metastatic neck nodes. A large, prospective study is still warranted to validate the findings of the present study. Second, performance of the IVIM model was limited by the SNR at 1.5 T. The SNRs of IVIM images obtained from 16 patients with head and neck cancer in this study were in the range of 4 to 17, and the average SNR was 11. Signal-to-noise ratio can be increased by increasing the voxel size of the DW-MR image, number of excitation, or magnetic field strength (≥3 T). Finally, the exact nature of IVIM modeling still needs to be elucidated, and a comparison with dynamic contrast-enhanced MRI (MRI technique to assess microvasculature/perfusion in tumors) is warranted.

The present feasibility study shows interesting pretreatment results with IVIM data that can measure simultaneously diffusion and perfusion effects without the need to inject a contrast agent. Such pretreatment data may have translational applications in 3 areas: treatment planning, prediction of outcome, and monitoring treatment response. In the future, if pretreatment IVIM data can help distinguish tumors with a good prognosis from those with a poor prognosis, use of IVIM may allow individualized treatment planning for patients with head and neck cancer. It may help identify patients at risk earlier so that they can be considered for treatment with anxiobiogenic agents, hypoxia-targeting therapy, or gene therapy.

CONCLUSIONS

In conclusion, pretreatment IVIM is feasible in patients with head and neck cancer with nodal metastases. All IVIM parameters between primary tumors and metastatic nodes were highly correlated; primary tumors had higher values of f and D. Measures of SD (D) in both primary tumors and metastatic nodes were found to be predictors of outcome. After appropriate validation, these findings might be useful in optimizing treatment planning and improving patient care.

ACKNOWLEDGMENTS

The authors would like to thank the MRI technologists for their great efforts to help perform the MRI examinations and Ms Dara Srisaranard for her helpful contribution to patient enrollment and data management. We thank Ms Sandhya George for editing the manuscript.

REFERENCES

